Setting

rm(list=ls(all=TRUE))
setwd('C:/Users/sitdo/Documents/GitHub/IBD-EDA/paper1/')

Loading Data

library(dplyr)

载入程辑包:‘dplyr’

The following objects are masked from ‘package:stats’:

    filter, lag

The following objects are masked from ‘package:base’:

    intersect, setdiff, setequal, union
data <- read.csv("./data_preprocessed/data.csv") %>% select(-1)

Installing Packages

library(neuralnet)

载入程辑包:‘neuralnet’

The following object is masked from ‘package:dplyr’:

    compute

Method I: Splitting Data

set.seed(123)
splitting_ratio <- 0.7

indices <- 1:nrow(data)
shuffled_indices <- sample(indices) 
train_size <- floor(splitting_ratio * length(indices))

train_indices <- shuffled_indices[1:train_size]
test_indices <- shuffled_indices[(train_size + 1):length(indices)]

train_data <- data[train_indices, ]
test_data <- data[test_indices, ]

Building Model

ann_formula <- as.formula("dod ~ .")
ann_model <- neuralnet(ann_formula,
                       data = train_data,
                       hidden = c(32, 16),
                       linear.output = FALSE,
                       act.fct = "logistic")

trained_model <- ann_model

Performance

predictions <- compute(trained_model, 
                       test_data[, -1])$net.result

Confusion Matrix

confusion_matrix <- table(
  as.numeric(test_data$dod), as.numeric(ifelse(predictions > 0.5, 1, 0))
)

TP <- confusion_matrix[1, 1]
TN <- confusion_matrix[2, 2]
FP <- confusion_matrix[2, 1]
FN <- confusion_matrix[1, 2]

## Calculate Accuracy
accuracy <- (TP + TN) / (TP + FP + TN + FN)
cat("Accuracy:", accuracy, "\n")
Accuracy: 0.8443526 
## Calculate Recall
recall <- TP / (TP + FN)
cat("Recall:", recall, "\n")
Recall: 0.9299674 
## Calculate Precision
precision <- TP / (TP + FP)
cat("Precision:", precision, "\n")
Precision: 0.8907956 
## Calculate Specificity
specificity <- TN / (TN + FP)
cat("Specificity:", specificity, "\n")
Specificity: 0.375 
## Calculate F1 Score
f1_score <- 2 * (precision * recall) / (precision + recall)
cat("F1 Score:", f1_score, "\n")
F1 Score: 0.9099602 

ROC Curve

library(pROC)
Type 'citation("pROC")' for a citation.

载入程辑包:‘pROC’

The following objects are masked from ‘package:stats’:

    cov, smooth, var
# Calculate ROC curve using the actual values and predictions
roc_obj <- roc(
  as.numeric(test_data$dod), predictions
)
Setting levels: control = 0, case = 1
Warning: Deprecated use a matrix as predictor. Unexpected results may be produced, please pass a numeric vector.Setting direction: controls < cases
# Plot the ROC curve
plot(
  roc_obj,
  col = "blue",
  main = "ROC Curve - ANN",
  legacy.axes = TRUE,
  print.auc = TRUE,
  print.thres = TRUE,
  grid = c(0.2, 0.2),
  grid.col = c("green", "orange")
)

Method II: Cross Validation

# Perform 10-fold cross-validation
num_folds <- 10
folds <- cut(seq(1, nrow(data)), breaks = num_folds, labels = FALSE)

# Create empty vectors to store the predictions and actual values
all_predictions <- vector()
all_actuals <- vector()

for (i in 1:num_folds) {
  # Split the data into training and test sets for the current fold
  train_data <- data[folds != i, ]
  test_data <- data[folds == i, ]
  
  # ANN
  ann_formula <- as.formula("dod ~ .")
  ann_model <- neuralnet(ann_formula, 
                         data = train_data, 
                         hidden = c(32, 16), 
                         linear.output = FALSE, 
                         act.fct = "logistic")
  trained_model <- ann_model
  
  # Make predictions on the test set
  predictions <- compute(trained_model, 
                         test_data[, -1])$net.result
  
  # Append the predictions and actual values to the vectors
  all_predictions <- c(all_predictions, predictions)
  all_actuals <- c(all_actuals, test_data[, 1])
}

Performance

Confusion Matrix

confusion_matrix <- table(
  as.numeric(all_actuals), 
  as.numeric(ifelse(all_predictions > 0.5, 1, 0))
)

TP <- confusion_matrix[1, 1]
TN <- confusion_matrix[2, 2]
FP <- confusion_matrix[2, 1]
FN <- confusion_matrix[1, 2]

## Calculate Accuracy
accuracy <- (TP + TN) / (TP + FP + TN + FN)
cat("Accuracy:", accuracy, "\n")
Accuracy: 0.836988 
## Calculate Recall
recall <- TP / (TP + FN)
cat("Recall:", recall, "\n")
Recall: 0.9170349 
## Calculate Precision
precision <- TP / (TP + FP)
cat("Precision:", precision, "\n")
Precision: 0.8924988 
## Calculate Specificity
specificity <- TN / (TN + FP)
cat("Specificity:", specificity, "\n")
Specificity: 0.4078947 
## Calculate F1 Score
f1_score <- 2 * (precision * recall) / (precision + recall)
cat("F1 Score:", f1_score, "\n")
F1 Score: 0.9046005 

ROC Curve

# Calculate ROC curve using the actual values and predictions
roc_obj <- roc(
  as.numeric(all_actuals), all_predictions
)
Setting levels: control = 0, case = 1
Setting direction: controls < cases
# Plot the ROC curve
plot(
  roc_obj,
  col = "blue",
  main = "ROC Curve - ANN (Cross Validation)",
  legacy.axes = TRUE,
  print.auc = TRUE,
  print.thres = TRUE,
  grid = c(0.2, 0.2),
  grid.col = c("green", "orange")
)

LS0tDQp0aXRsZTogIkFOTiINCm91dHB1dDogDQogIGh0bWxfbm90ZWJvb2s6IA0KICAgIHRvYzogdHJ1ZQ0KICAgIHRoZW1lOiBjb3Ntbw0KLS0tDQoNCiMgU2V0dGluZw0KDQpgYGB7cn0NCnJtKGxpc3Q9bHMoYWxsPVRSVUUpKQ0Kc2V0d2QoJ0M6L1VzZXJzL3NpdGRvL0RvY3VtZW50cy9HaXRIdWIvSUJELUVEQS9wYXBlcjEvJykNCmBgYA0KDQojIExvYWRpbmcgRGF0YQ0KDQpgYGB7cn0NCmxpYnJhcnkoZHBseXIpDQoNCmRhdGEgPC0gcmVhZC5jc3YoIi4vZGF0YV9wcmVwcm9jZXNzZWQvZGF0YS5jc3YiKSAlPiUgc2VsZWN0KC0xKQ0KYGBgDQoNCiMgSW5zdGFsbGluZyBQYWNrYWdlcw0KDQpgYGB7cn0NCmxpYnJhcnkobmV1cmFsbmV0KQ0KYGBgDQoNCiMgTWV0aG9kIEk6IFNwbGl0dGluZyBEYXRhDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMTIzKQ0Kc3BsaXR0aW5nX3JhdGlvIDwtIDAuNw0KDQppbmRpY2VzIDwtIDE6bnJvdyhkYXRhKQ0Kc2h1ZmZsZWRfaW5kaWNlcyA8LSBzYW1wbGUoaW5kaWNlcykgDQp0cmFpbl9zaXplIDwtIGZsb29yKHNwbGl0dGluZ19yYXRpbyAqIGxlbmd0aChpbmRpY2VzKSkNCg0KdHJhaW5faW5kaWNlcyA8LSBzaHVmZmxlZF9pbmRpY2VzWzE6dHJhaW5fc2l6ZV0NCnRlc3RfaW5kaWNlcyA8LSBzaHVmZmxlZF9pbmRpY2VzWyh0cmFpbl9zaXplICsgMSk6bGVuZ3RoKGluZGljZXMpXQ0KDQp0cmFpbl9kYXRhIDwtIGRhdGFbdHJhaW5faW5kaWNlcywgXQ0KdGVzdF9kYXRhIDwtIGRhdGFbdGVzdF9pbmRpY2VzLCBdDQpgYGANCg0KIyMgQnVpbGRpbmcgTW9kZWwNCg0KYGBge3J9DQphbm5fZm9ybXVsYSA8LSBhcy5mb3JtdWxhKCJkb2QgfiAuIikNCmFubl9tb2RlbCA8LSBuZXVyYWxuZXQoYW5uX2Zvcm11bGEsDQogICAgICAgICAgICAgICAgICAgICAgIGRhdGEgPSB0cmFpbl9kYXRhLA0KICAgICAgICAgICAgICAgICAgICAgICBoaWRkZW4gPSBjKDMyLCAxNiksDQogICAgICAgICAgICAgICAgICAgICAgIGxpbmVhci5vdXRwdXQgPSBGQUxTRSwNCiAgICAgICAgICAgICAgICAgICAgICAgYWN0LmZjdCA9ICJsb2dpc3RpYyIpDQoNCnRyYWluZWRfbW9kZWwgPC0gYW5uX21vZGVsDQpgYGANCg0KIyMgUGVyZm9ybWFuY2UNCg0KYGBge3J9DQpwcmVkaWN0aW9ucyA8LSBjb21wdXRlKHRyYWluZWRfbW9kZWwsIA0KICAgICAgICAgICAgICAgICAgICAgICB0ZXN0X2RhdGFbLCAtMV0pJG5ldC5yZXN1bHQNCmBgYA0KDQojIyMgQ29uZnVzaW9uIE1hdHJpeA0KDQpgYGB7cn0NCmNvbmZ1c2lvbl9tYXRyaXggPC0gdGFibGUoDQogIGFzLm51bWVyaWModGVzdF9kYXRhJGRvZCksIGFzLm51bWVyaWMoaWZlbHNlKHByZWRpY3Rpb25zID4gMC41LCAxLCAwKSkNCikNCg0KVFAgPC0gY29uZnVzaW9uX21hdHJpeFsxLCAxXQ0KVE4gPC0gY29uZnVzaW9uX21hdHJpeFsyLCAyXQ0KRlAgPC0gY29uZnVzaW9uX21hdHJpeFsyLCAxXQ0KRk4gPC0gY29uZnVzaW9uX21hdHJpeFsxLCAyXQ0KDQojIyBDYWxjdWxhdGUgQWNjdXJhY3kNCmFjY3VyYWN5IDwtIChUUCArIFROKSAvIChUUCArIEZQICsgVE4gKyBGTikNCmNhdCgiQWNjdXJhY3k6IiwgYWNjdXJhY3ksICJcbiIpDQoNCiMjIENhbGN1bGF0ZSBSZWNhbGwNCnJlY2FsbCA8LSBUUCAvIChUUCArIEZOKQ0KY2F0KCJSZWNhbGw6IiwgcmVjYWxsLCAiXG4iKQ0KDQojIyBDYWxjdWxhdGUgUHJlY2lzaW9uDQpwcmVjaXNpb24gPC0gVFAgLyAoVFAgKyBGUCkNCmNhdCgiUHJlY2lzaW9uOiIsIHByZWNpc2lvbiwgIlxuIikNCg0KIyMgQ2FsY3VsYXRlIFNwZWNpZmljaXR5DQpzcGVjaWZpY2l0eSA8LSBUTiAvIChUTiArIEZQKQ0KY2F0KCJTcGVjaWZpY2l0eToiLCBzcGVjaWZpY2l0eSwgIlxuIikNCg0KIyMgQ2FsY3VsYXRlIEYxIFNjb3JlDQpmMV9zY29yZSA8LSAyICogKHByZWNpc2lvbiAqIHJlY2FsbCkgLyAocHJlY2lzaW9uICsgcmVjYWxsKQ0KY2F0KCJGMSBTY29yZToiLCBmMV9zY29yZSwgIlxuIikNCmBgYA0KDQojIyMgUk9DIEN1cnZlDQoNCmBgYHtyfQ0KbGlicmFyeShwUk9DKQ0KIyBDYWxjdWxhdGUgUk9DIGN1cnZlIHVzaW5nIHRoZSBhY3R1YWwgdmFsdWVzIGFuZCBwcmVkaWN0aW9ucw0Kcm9jX29iaiA8LSByb2MoDQogIGFzLm51bWVyaWModGVzdF9kYXRhJGRvZCksIHByZWRpY3Rpb25zDQopDQoNCiMgUGxvdCB0aGUgUk9DIGN1cnZlDQpwbG90KA0KICByb2Nfb2JqLA0KICBjb2wgPSAiYmx1ZSIsDQogIG1haW4gPSAiUk9DIEN1cnZlIC0gQU5OIiwNCiAgbGVnYWN5LmF4ZXMgPSBUUlVFLA0KICBwcmludC5hdWMgPSBUUlVFLA0KICBwcmludC50aHJlcyA9IFRSVUUsDQogIGdyaWQgPSBjKDAuMiwgMC4yKSwNCiAgZ3JpZC5jb2wgPSBjKCJncmVlbiIsICJvcmFuZ2UiKQ0KKQ0KYGBgDQoNCiMgTWV0aG9kIElJOiBDcm9zcyBWYWxpZGF0aW9uDQoNCmBgYHtyfQ0KIyBQZXJmb3JtIDEwLWZvbGQgY3Jvc3MtdmFsaWRhdGlvbg0KbnVtX2ZvbGRzIDwtIDEwDQpmb2xkcyA8LSBjdXQoc2VxKDEsIG5yb3coZGF0YSkpLCBicmVha3MgPSBudW1fZm9sZHMsIGxhYmVscyA9IEZBTFNFKQ0KDQojIENyZWF0ZSBlbXB0eSB2ZWN0b3JzIHRvIHN0b3JlIHRoZSBwcmVkaWN0aW9ucyBhbmQgYWN0dWFsIHZhbHVlcw0KYWxsX3ByZWRpY3Rpb25zIDwtIHZlY3RvcigpDQphbGxfYWN0dWFscyA8LSB2ZWN0b3IoKQ0KDQpmb3IgKGkgaW4gMTpudW1fZm9sZHMpIHsNCiAgIyBTcGxpdCB0aGUgZGF0YSBpbnRvIHRyYWluaW5nIGFuZCB0ZXN0IHNldHMgZm9yIHRoZSBjdXJyZW50IGZvbGQNCiAgdHJhaW5fZGF0YSA8LSBkYXRhW2ZvbGRzICE9IGksIF0NCiAgdGVzdF9kYXRhIDwtIGRhdGFbZm9sZHMgPT0gaSwgXQ0KICANCiAgIyBBTk4NCiAgYW5uX2Zvcm11bGEgPC0gYXMuZm9ybXVsYSgiZG9kIH4gLiIpDQogIGFubl9tb2RlbCA8LSBuZXVyYWxuZXQoYW5uX2Zvcm11bGEsIA0KICAgICAgICAgICAgICAgICAgICAgICAgIGRhdGEgPSB0cmFpbl9kYXRhLCANCiAgICAgICAgICAgICAgICAgICAgICAgICBoaWRkZW4gPSBjKDMyLCAxNiksIA0KICAgICAgICAgICAgICAgICAgICAgICAgIGxpbmVhci5vdXRwdXQgPSBGQUxTRSwgDQogICAgICAgICAgICAgICAgICAgICAgICAgYWN0LmZjdCA9ICJsb2dpc3RpYyIpDQogIHRyYWluZWRfbW9kZWwgPC0gYW5uX21vZGVsDQogIA0KICAjIE1ha2UgcHJlZGljdGlvbnMgb24gdGhlIHRlc3Qgc2V0DQogIHByZWRpY3Rpb25zIDwtIGNvbXB1dGUodHJhaW5lZF9tb2RlbCwgDQogICAgICAgICAgICAgICAgICAgICAgICAgdGVzdF9kYXRhWywgLTFdKSRuZXQucmVzdWx0DQogIA0KICAjIEFwcGVuZCB0aGUgcHJlZGljdGlvbnMgYW5kIGFjdHVhbCB2YWx1ZXMgdG8gdGhlIHZlY3RvcnMNCiAgYWxsX3ByZWRpY3Rpb25zIDwtIGMoYWxsX3ByZWRpY3Rpb25zLCBwcmVkaWN0aW9ucykNCiAgYWxsX2FjdHVhbHMgPC0gYyhhbGxfYWN0dWFscywgdGVzdF9kYXRhWywgMV0pDQp9DQoNCmBgYA0KDQojIyBQZXJmb3JtYW5jZQ0KDQojIyMgQ29uZnVzaW9uIE1hdHJpeA0KDQpgYGB7cn0NCmNvbmZ1c2lvbl9tYXRyaXggPC0gdGFibGUoDQogIGFzLm51bWVyaWMoYWxsX2FjdHVhbHMpLCANCiAgYXMubnVtZXJpYyhpZmVsc2UoYWxsX3ByZWRpY3Rpb25zID4gMC41LCAxLCAwKSkNCikNCg0KVFAgPC0gY29uZnVzaW9uX21hdHJpeFsxLCAxXQ0KVE4gPC0gY29uZnVzaW9uX21hdHJpeFsyLCAyXQ0KRlAgPC0gY29uZnVzaW9uX21hdHJpeFsyLCAxXQ0KRk4gPC0gY29uZnVzaW9uX21hdHJpeFsxLCAyXQ0KDQojIyBDYWxjdWxhdGUgQWNjdXJhY3kNCmFjY3VyYWN5IDwtIChUUCArIFROKSAvIChUUCArIEZQICsgVE4gKyBGTikNCmNhdCgiQWNjdXJhY3k6IiwgYWNjdXJhY3ksICJcbiIpDQoNCiMjIENhbGN1bGF0ZSBSZWNhbGwNCnJlY2FsbCA8LSBUUCAvIChUUCArIEZOKQ0KY2F0KCJSZWNhbGw6IiwgcmVjYWxsLCAiXG4iKQ0KDQojIyBDYWxjdWxhdGUgUHJlY2lzaW9uDQpwcmVjaXNpb24gPC0gVFAgLyAoVFAgKyBGUCkNCmNhdCgiUHJlY2lzaW9uOiIsIHByZWNpc2lvbiwgIlxuIikNCg0KIyMgQ2FsY3VsYXRlIFNwZWNpZmljaXR5DQpzcGVjaWZpY2l0eSA8LSBUTiAvIChUTiArIEZQKQ0KY2F0KCJTcGVjaWZpY2l0eToiLCBzcGVjaWZpY2l0eSwgIlxuIikNCg0KIyMgQ2FsY3VsYXRlIEYxIFNjb3JlDQpmMV9zY29yZSA8LSAyICogKHByZWNpc2lvbiAqIHJlY2FsbCkgLyAocHJlY2lzaW9uICsgcmVjYWxsKQ0KY2F0KCJGMSBTY29yZToiLCBmMV9zY29yZSwgIlxuIikNCg0KYGBgDQoNCiMjIyBST0MgQ3VydmUNCg0KYGBge3J9DQojIENhbGN1bGF0ZSBST0MgY3VydmUgdXNpbmcgdGhlIGFjdHVhbCB2YWx1ZXMgYW5kIHByZWRpY3Rpb25zDQpyb2Nfb2JqIDwtIHJvYygNCiAgYXMubnVtZXJpYyhhbGxfYWN0dWFscyksIGFsbF9wcmVkaWN0aW9ucw0KKQ0KDQojIFBsb3QgdGhlIFJPQyBjdXJ2ZQ0KcGxvdCgNCiAgcm9jX29iaiwNCiAgY29sID0gImJsdWUiLA0KICBtYWluID0gIlJPQyBDdXJ2ZSAtIEFOTiAoQ3Jvc3MgVmFsaWRhdGlvbikiLA0KICBsZWdhY3kuYXhlcyA9IFRSVUUsDQogIHByaW50LmF1YyA9IFRSVUUsDQogIHByaW50LnRocmVzID0gVFJVRSwNCiAgZ3JpZCA9IGMoMC4yLCAwLjIpLA0KICBncmlkLmNvbCA9IGMoImdyZWVuIiwgIm9yYW5nZSIpDQopDQpgYGANCg0K